12 research outputs found

    Gait Programming for Multi-Legged Robot Climbing on Walls and Ceilings

    Get PDF

    A YBCO RF-squid variable temperature susceptometer and its applications

    Get PDF
    The Superconducting QUantum Interference Device (SQUID) susceptibility using a high-temperature radio-frequency (rf) SQUID and a normal metal pick-up coil is employed in testing weak magnetization of the sample. The magnetic moment resolution of the device is 1 x 10(exp -6) emu, and that of the susceptibility is 5 x 10(exp -6) emu/cu cm

    On transit gait programming of six-legged wall-climbing robot

    No full text

    On maximal weight moment and overturn tendency of multi-sucker wall-climbing mechanism

    No full text

    Design Optimization for the Thin-Walled Joint Thread of a Coring Tool Used for Deep Boreholes

    No full text
    Threaded joints are key components of core drilling tools. Currently, core drilling tools generally adopt the thread structure designed by the API Spec 7-1 standard. However, fractures easily occur in this thread structure due to high stress concentrations, resulting in downhole accidents. In this paper, according to the needs of large-diameter core drilling, a core barrel joint was designed with an outer diameter of Φ135 mm and a trapezoidal thread profile. Subsequently, a three-dimensional simulation model of the joint was established. The influence of the external load, connection state and thread structure on the stress distribution in the joint was analyzed through simulations, from which the optimal thread structure was determined. Finally, a connection test was carried out on the threaded joint. The stress distribution in the joint thread was indirectly studied by analyzing gas leaks (i.e., the sealing effect) under axial tension. According to the test data and the simulation results, the final joint thread structure was optimized, which lays a good foundation for the design of a core barrel

    A Metallurgical Dynamics-Based Method for Production State Characterization and End-Point Time Prediction of Basic Oxygen Furnace Steelmaking

    No full text
    Basic Oxygen Furnace (BOF) steelmaking is an important way for steel production. Correctly recognizing different blowing periods and abnormal refining states is significant to ensure normal production process, while accurately predicting the end-point time helps to increase the first-time qualification rate of molten steel. Since the decarburization products CO and CO2 are the main compositions of off-gas, information of off-gas is explored for BOF steelmaking control. However, the problem is that most of the existing research directly gave the proportions of CO and CO2 as model input but barely considered the variation information of off-gas to describe the production state. At the same time, the off-gas information can be expected to recognize the last blowing period and predict the end-point time earlier than the existing methods that are based on sub-lance or furnace flame image, but little literature makes an attempt. Therefore, this work proposes a new method based on functional data analysis (FDA) and phase plane (PP), defined as FDA-PP, to describe and predict the BOF steelmaking process from the metallurgical dynamics viewpoint. This method extracts the total proportion of CO and CO2 and its first-order derivative as dynamics features of steelmaking process via FDA, which indicate the reaction velocity and acceleration of decarburization reaction, and describes the evolution of dynamics features via PP. Then, the FDA-PP method extracts the features of phase trajectories for production state recognition and end-point time prediction. Experiments on a real production dataset demonstrate that the FDA-PP method has higher production state recognition accuracy than the classical phase space, SVM, and BP methods, which is 87.78% for blowing periods of normal batches, 90.94% for splashing anomaly, and 81.29% for drying anomaly, respectively. At the same time, the FDA-PP method decreases the mean relative prediction error (MRE) of the end-point time prediction for abnormal batches by about 10% compared with the SVM and BP methods

    Development of Robotic Inspection System for Small Pipelines

    No full text
    utomated probing and inspection inside small pipelines have become a hot topic among the micro-robot researchers in both universities and companies worldwide. The reason for that is the potential applications in nuclear power plants (PWR), civil engineering (gas and water) and in chemical plants and so on. This paper outlines the R & D activities on robotic inspection systems for 20mm-diameter pipelines conducted at Shanghai University in collaboration with NDT Center for Nuclear Industry. The locomotion mechanism comparison and synthesis are covered first. Several robotic inspection systems and different locomotion mechanisms are presented. Further development goals underway are briefly discussed.Copyright © 2000 by ASM
    corecore